enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weak convergence (Hilbert space) - Wikipedia

    en.wikipedia.org/wiki/Weak_convergence_(Hilbert...

    The first three functions in the sequence () = ⁡ on [,].As converges weakly to =.. The Hilbert space [,] is the space of the square-integrable functions on the interval [,] equipped with the inner product defined by

  3. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    A Bergman space is an example of a reproducing kernel Hilbert space, which is a Hilbert space of functions along with a kernel K(ζ, z) that verifies a reproducing property analogous to this one. The Hardy space H 2 ( D ) also admits a reproducing kernel, known as the Szegő kernel . [ 37 ]

  4. Bergman kernel - Wikipedia

    en.wikipedia.org/wiki/Bergman_kernel

    where H(D) is the space of holomorphic functions in D. Then L 2, h ( D ) is a Hilbert space: it is a closed linear subspace of L 2 ( D ), and therefore complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function ƒ in D

  5. Gelfand–Naimark–Segal construction - Wikipedia

    en.wikipedia.org/wiki/Gelfand–Naimark–Segal...

    [4] In his paper of 1947 Segal showed that it is sufficient, for any physical system that can be described by an algebra of operators on a Hilbert space, to consider the irreducible representations of a -algebra. In quantum theory this means that the -algebra is generated by the observables.

  6. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    As such, quantum states form a ray in projective Hilbert space, not a vector. Many textbooks fail to make this distinction, which could be partly a result of the fact that the Schrödinger equation itself involves Hilbert-space "vectors", with the result that the imprecise use of "state vector" rather than ray is very difficult to avoid. [5]

  7. Fundamental theorem of Hilbert spaces - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The sesquilinear form B : H × H → is separately uniformly continuous in each of its two arguments and hence can be extended to a separately continuous sesquilinear form on the completion of H; if H is Hausdorff then this completion is a Hilbert space. [1] A Hausdorff pre-Hilbert space that is complete is called a Hilbert space.

  8. Reproducing kernel Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Reproducing_kernel_Hilbert...

    Let be an arbitrary set and a Hilbert space of real-valued functions on , equipped with pointwise addition and pointwise scalar multiplication.The evaluation functional over the Hilbert space of functions is a linear functional that evaluates each function at a point ,

  9. Quantum configuration space - Wikipedia

    en.wikipedia.org/wiki/Quantum_configuration_space

    The single point denoted in this space is represented by the set of functions () where and represents an index set. In quantum field theory , it is expected that the Hilbert space is also the L 2 {\displaystyle L^{2}} space on the configuration space of the field, which is infinite dimensional, with respect to some Borel measure naturally defined.