enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [ 1 ] If A is a differentiable map from the real numbers to n × n matrices, then

  3. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    [a] This means that the function that maps y to f(x) + J(x) ⋅ (y – x) is the best linear approximation of f(y) for all points y close to x. The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x. When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the ...

  4. Adjugate matrix - Wikipedia

    en.wikipedia.org/wiki/Adjugate_matrix

    In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [1] [2] It is occasionally known as adjunct matrix, [3] [4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.

  5. Jacobian conjecture - Wikipedia

    en.wikipedia.org/wiki/Jacobian_conjecture

    The polynomial xx p has derivative 1 − p x p−1 which is 1 (because px is 0) but it has no inverse function. However, Kossivi Adjamagbo suggested extending the Jacobian conjecture to characteristic p > 0 by adding the hypothesis that p does not divide the degree of the field extension k(X) / k(F). [3]

  6. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in.

  7. Jacobi polynomials - Wikipedia

    en.wikipedia.org/wiki/Jacobi_polynomials

    Plot of the Jacobi polynomial function (,) with = and = and = in the complex plane from to + with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics , Jacobi polynomials (occasionally called hypergeometric polynomials ) P n ( α , β ) ( x ) {\displaystyle P_{n}^{(\alpha ,\beta )}(x)} are a class of classical orthogonal ...

  8. Schur polynomial - Wikipedia

    en.wikipedia.org/wiki/Schur_polynomial

    This is known as the bialternant formula of Jacobi. It is a special case of the Weyl character formula . This is a symmetric function because the numerator and denominator are both alternating, and a polynomial since all alternating polynomials are divisible by the Vandermonde determinant.

  9. Carl Gustav Jacob Jacobi - Wikipedia

    en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi

    Carl Gustav Jacob Jacobi. Jacobi was the first to apply elliptic functions to number theory, for example proving Fermat's two-square theorem and Lagrange's four-square theorem, and similar results for 6 and 8 squares.