Search results
Results from the WOW.Com Content Network
The Nernst–Planck equation is a conservation of mass equation used to describe the motion of a charged chemical species in a fluid medium. It extends Fick's law of diffusion for the case where the diffusing particles are also moved with respect to the fluid by electrostatic forces.
The electromotive force generated by motion is often referred to as motional emf. When the change in flux linkage arises from a change in the magnetic field around the stationary conductor, the emf is dynamically induced. The electromotive force generated by a time-varying magnetic field is often referred to as transformer emf.
The EMF of a concentration cell without transport is: E n t = R T F ln a 2 a 1 {\displaystyle E_{\mathrm {nt} }={\frac {RT}{F}}\ln {\frac {a_{2}}{a_{1}}}} where a 1 {\displaystyle a_{1}} and a 2 {\displaystyle a_{2}} are activities of HCl in the two solutions, R {\displaystyle R} is the universal gas constant , T {\displaystyle T} is the ...
Therefore, emf is expressed as = (+) where is emf and v is the unit charge velocity. In a macroscopic view, for charges on a segment of the loop, v consists of two components in average; one is the velocity of the charge along the segment v t , and the other is the velocity of the segment v l (the loop is deformed or moved).
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
Bipolar electrochemistry scheme. In electrochemistry, standard electrode potential, or , is a measure of the reducing power of any element or compound.The IUPAC "Gold Book" defines it as; "the value of the standard emf (electromotive force) of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode".
The emf of the cell at zero current is the maximum possible emf. It can be used to calculate the maximum possible electrical energy that could be obtained from a chemical reaction . This energy is referred to as electrical work and is expressed by the following equation:
The emf generated by Faraday's law of induction due to relative movement of a circuit and a magnetic field is the phenomenon underlying electrical generators. When a permanent magnet is moved relative to a conductor, or vice versa, an electromotive force is created.