enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spectral line shape - Wikipedia

    en.wikipedia.org/wiki/Spectral_line_shape

    The spectrum consists of a series of overlapping lines belonging to a vibronic progression. Spectral line shape or spectral line profile describes the form of an electromagnetic spectrum in the vicinity of a spectral line – a region of stronger or weaker intensity in the spectrum. Ideal line shapes include Lorentzian, Gaussian and Voigt ...

  3. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    Hydrogen spectral series. Appearance. The spectral series of hydrogen, on a logarithmic scale. The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom.

  4. Balmer series - Wikipedia

    en.wikipedia.org/wiki/Balmer_series

    The "visible" hydrogen emission spectrum lines in the Balmer series. H-alpha is the red line at the right. Four lines (counting from the right) are formally in the visible range. Lines five and six can be seen with the naked eye, but are considered to be ultraviolet as they have wavelengths less than 400 nm.

  5. Hydrogen line - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_line

    A hydrogen atom with proton and electron spins aligned (top) undergoes a flip of the electron spin, resulting in emission of a photon with a 21 cm wavelength (bottom) The hydrogen line, 21 centimeter line, or H I line[ a ] is a spectral line that is created by a change in the energy state of solitary, electrically neutral hydrogen atoms.

  6. Lyman series - Wikipedia

    en.wikipedia.org/wiki/Lyman_series

    Lyman series. In physics and chemistry, the Lyman series is a hydrogen spectral series of transitions and resulting ultraviolet emission lines of the hydrogen atom as an electron goes from n ≥ 2 to n = 1 (where n is the principal quantum number), the lowest energy level of the electron (groundstate). The transitions are named sequentially by ...

  7. Hydrogen-alpha - Wikipedia

    en.wikipedia.org/wiki/Hydrogen-alpha

    Hydrogen-alpha, typically shortened to H-alpha or Hα, is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28 nm in air and 656.46 nm in vacuum. It is the first spectral line in the Balmer series and is emitted when an electron falls from a hydrogen atom's third- to second-lowest energy level.

  8. Bohr–Sommerfeld model - Wikipedia

    en.wikipedia.org/wiki/Bohr–Sommerfeld_model

    The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld. Sommerfeld showed that, if electronic orbits ...

  9. Fine structure - Wikipedia

    en.wikipedia.org/wiki/Fine_structure

    The fine structure energy corrections can be obtained by using perturbation theory.To perform this calculation one must add three corrective terms to the Hamiltonian: the leading order relativistic correction to the kinetic energy, the correction due to the spin–orbit coupling, and the Darwin term coming from the quantum fluctuating motion or zitterbewegung of the electron.