enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    v. t. e. The speed of light in vacuum, commonly denoted c, is a universal physical constant that is exactly equal to 299,792,458 metres per second (approximately 300,000 kilometres per second; 186,000 miles per second; 671 million miles per hour).

  3. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    The "time" axis gives the angular frequency (rad⋅s −1) and the "space" axis represents the angular wavenumber (rad⋅m −1). Green and indigo represent left and right polarization. In empty space, the photon moves at c (the speed of light) and its energy and momentum are related by E = pc, where p is the magnitude of the momentum vector p.

  4. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.

  5. Planck units - Wikipedia

    en.wikipedia.org/wiki/Planck_units

    The term Planck scale refers to quantities of space, time, energy and other units that are similar in magnitude to corresponding Planck units. This region may be characterized by particle energies of around 10 19 GeV or 10 9 J , time intervals of around 5 × 10 −44 s and lengths of around 10 −35 m (approximately the energy-equivalent of the ...

  6. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [ 1 ] [ 2 ] [ 3 ] and that the particles are free.

  7. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Lorentz factor. where and v is the relative velocity between two inertial frames. For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t and t' at the same position x in same inertial frame)

  8. Rindler coordinates - Wikipedia

    en.wikipedia.org/wiki/Rindler_coordinates

    Even if we pick units where =, the magnitude of the proper acceleration will depend on our choice of units: for example, if we use units of light-years for distance, (or ) and years for time, (or ), this would mean = light year/year 2, equal to about 9.5 meters/second 2, while if we use units of light-seconds for distance, (or ), and seconds ...

  9. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    The refractive index, n{\displaystyle n}, can be seen as the factor by which the speed and the wavelengthof the radiation are reduced with respect to their vacuum values: the speed of light in a medium is v= c/n, and similarly the wavelength in that medium is λ= λ0/n, where λ0is the wavelength of that light in vacuum.