Ad
related to: when to use anova analysis method
Search results
Results from the WOW.Com Content Network
Analysis of variance (ANOVA) is a family of statistical methods used to compare the means of two or more groups by analyzing variance. Specifically, ANOVA compares the amount of variation between the group means to the amount of variation within each group.
In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way". [1]
In 1925, Ronald Fisher mentions the two-way ANOVA in his celebrated book, Statistical Methods for Research Workers (chapters 7 and 8). In 1934, Frank Yates published procedures for the unbalanced case. [1] Since then, an extensive literature has been produced. The topic was reviewed in 1993 by Yasunori Fujikoshi. [2]
Huck, S. W. & McLean, R. A. (1975). "Using a repeated measures ANOVA to analyze the data from a pretest-posttest design: A potentially confusing task". Psychological Bulletin, 82, 511–518. Pollatsek, A. & Well, A. D. (1995). "On the use of counterbalanced designs in cognitive research: A suggestion for a better and more powerful analysis".
In statistics, one purpose for the analysis of variance (ANOVA) is to analyze differences in means between groups. The test statistic, F, assumes independence of observations, homogeneous variances, and population normality. ANOVA on ranks is a statistic designed for situations when the normality assumption has been violated.
ANOVA gauge repeatability and reproducibility is a measurement systems analysis technique that uses an analysis of variance (ANOVA) random effects model to assess a measurement system. The evaluation of a measurement system is not limited to gauge but to all types of measuring instruments , test methods , and other measurement systems.
The hypothesis that a data set in a regression analysis follows the simpler of two proposed linear models that are nested within each other. Multiple-comparison testing is conducted using needed data in already completed F-test, if F-test leads to rejection of null hypothesis and the factor under study has an impact on the dependent variable. [1]
The image above depicts a visual comparison between multivariate analysis of variance (MANOVA) and univariate analysis of variance (ANOVA). In MANOVA, researchers are examining the group differences of a singular independent variable across multiple outcome variables, whereas in an ANOVA, researchers are examining the group differences of sometimes multiple independent variables on a singular ...
Ad
related to: when to use anova analysis method