enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    The colored lines are 50% confidence intervals for the mean, μ. At the center of each interval is the sample mean, marked with a diamond. The blue intervals contain the population mean, and the red ones do not. In statistics, a confidence interval (CI) is a tool for estimating a parameter, such as the mean of a population. [1]

  3. Interval estimation - Wikipedia

    en.wikipedia.org/wiki/Interval_estimation

    A confidence interval states there is a 100γ% confidence that the parameter of interest is within a lower and upper bound. A common misconception of confidence intervals is 100γ% of the data set fits within or above/below the bounds, this is referred to as a tolerance interval, which is discussed below.

  4. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    So that with a sample of 20 points, 90% confidence interval will include the true variance only 78% of the time. [44] The basic / reverse percentile confidence intervals are easier to justify mathematically [45] [42] but they are less accurate in general than percentile confidence intervals, and some authors discourage their use. [42]

  5. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    Comparison of the rule of three to the exact binomial one-sided confidence interval with no positive samples. In statistical analysis, the rule of three states that if a certain event did not occur in a sample with n subjects, the interval from 0 to 3/ n is a 95% confidence interval for the rate of occurrences in the population.

  6. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    An example of how is used is to make confidence intervals of the unknown population mean is shown. If the sampling distribution is normally distributed , the sample mean, the standard error, and the quantiles of the normal distribution can be used to calculate confidence intervals for the true population mean.

  7. Confidence and prediction bands - Wikipedia

    en.wikipedia.org/wiki/Confidence_and_prediction...

    Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.

  8. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.

  9. Confidence distribution - Wikipedia

    en.wikipedia.org/wiki/Confidence_Distribution

    Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.