Search results
Results from the WOW.Com Content Network
A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but ...
The reactor is a sodium-cooled fast reactor, which uses liquid sodium as the coolant. [4] It uses two separate sodium loops, and these are connected to a main water-cooled loop which feeds the steam generators and turbines for producing electricity. [7] The sodium coolant is pressurized to 5.5 MPa, and is heated to over 500 °C in the reactor. [6]
Neutrons are slowed less by interaction with these heavy nuclei (thus not being neutron moderators) and therefore, help make this type of reactor a fast-neutron reactor. In simple terms, if a neutron hits a particle with a similar mass (such as hydrogen in a Pressurized Water Reactor PWR), it tends to lose kinetic energy. In contrast, if it ...
On the other hand, a fast reactor needs no moderator to slow down the neutrons at all, taking advantage of the fast neutrons producing a greater number of neutrons per fission than slow neutrons. For this reason ordinary liquid water , being a moderator and neutron absorber , is an undesirable primary coolant for fast reactors.
1943 Reactor diagram using boron control rods. Control rods are inserted into the core of a nuclear reactor and adjusted in order to control the rate of the nuclear chain reaction and, thereby, the thermal power output of the reactor, the rate of steam production, and the electrical power output of the power station.
Pool type sodium-cooled fast reactor (SFR) A sodium-cooled fast reactor is a fast neutron reactor cooled by liquid sodium.. The initials SFR in particular refer to two Generation IV reactor proposals, one based on existing liquid metal cooled reactor (LMFR) technology using mixed oxide fuel (MOX), and one based on the metal-fueled integral fast reactor.
To maintain this control, the chain reaction criticality must have a slow enough time scale to permit intervention by additional effects (e.g., mechanical control rods or thermal expansion). Consequently, all nuclear power reactors (even fast-neutron reactors) rely on delayed neutrons for their criticality. An operating nuclear power reactor ...
The BN-800 reactor (Russian: реактор БН–800) is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear Power Station, in Zarechny, Sverdlovsk Oblast, Russia. The reactor is designed to generate 880 MW of electrical power.