Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.
In order to see a clear image, the eye must focus rays of light on to the light-sensing part of the eye – the retina, which is located in the back of the eye.This focusing – called refraction – is performed mainly by the cornea and the lens, which are located at the front of the eye, the anterior segment.
Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.
The most general form of Cauchy's equation is = + + +,where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths.
The majority of autorefractors calculate the vision correction a patient needs (refraction) by using sensors that detect the reflections from a cone of infrared light. These reflections are used to determine the size and shape of a ring in the retina which is located in the posterior part of the eye.