Search results
Results from the WOW.Com Content Network
[A] can provide intuitive insight about the order of each of the reagents. If plots of v / [A] vs. [B] overlay for multiple experiments with different-excess, the data are consistent with a first-order dependence on [A]. The same could be said for a plot of v / [B] vs. [A]; overlay is consistent with a first-order dependence on [B].
In this one-compartment model, the most common model of elimination is first order kinetics, where the elimination of the drug is directly proportional to the drug's concentration in the organism. This is often called linear pharmacokinetics , as the change in concentration over time can be expressed as a linear differential equation d C d t ...
In first-order (linear) kinetics, the plasma concentration of a drug at a given time t after single dose administration via IV bolus injection is given by; = / where: C 0 is the initial concentration (at t=0)
Hence the removal of a large concentration of alcohol from blood may follow zero-order kinetics. Also the rate-limiting steps for one substance may be in common with other substances. For instance, the blood alcohol concentration can be used to modify the biochemistry of methanol and ethylene glycol.
The plateau principle is a mathematical model or scientific law originally developed to explain the time course of drug action (pharmacokinetics). [1] The principle has wide applicability in pharmacology, physiology, nutrition, biochemistry, and system dynamics.
In this regime, the first step (ionization of the alkyl bromide) is slow, rate-determining, and irreversible, while the second step (nucleophilic addition) is fast and kinetically invisible. However, under certain conditions, non-first-order reaction kinetics can be observed.
The order of reaction is an empirical quantity determined by experiment from the rate law of the reaction. It is the sum of the exponents in the rate law equation. [ 10 ] Molecularity, on the other hand, is deduced from the mechanism of an elementary reaction, and is used only in context of an elementary reaction.
Clearance is variable in zero-order kinetics because a constant amount of the drug is eliminated per unit time, but it is constant in first-order kinetics, because the amount of drug eliminated per unit time changes with the concentration of drug in the blood. [3] [4]