enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square wave - Wikipedia

    en.wikipedia.org/wiki/Square_wave

    The square wave in mathematics has many definitions, which are equivalent except at the discontinuities: It can be defined as simply the sign function of a sinusoid: = ⁡ (⁡) = ⁡ (⁡) = ⁡ (⁡) = ⁡ (⁡), which will be 1 when the sinusoid is positive, −1 when the sinusoid is negative, and 0 at the discontinuities.

  3. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    Functional approximation of square wave using 5 harmonics Functional approximation of square wave using 25 harmonics Functional approximation of square wave using 125 harmonics. The Gibbs phenomenon is a behavior of the Fourier series of a function with a jump discontinuity and is described as the following:

  4. Confluent hypergeometric function - Wikipedia

    en.wikipedia.org/wiki/Confluent_hypergeometric...

    Whittaker functions (for Edmund Taylor Whittaker) are solutions to Whittaker's equation. Coulomb wave functions are solutions to the Coulomb wave equation. The Kummer functions, Whittaker functions, and Coulomb wave functions are essentially the same, and differ from each other only by elementary functions and change of variables.

  5. Sinc function - Wikipedia

    en.wikipedia.org/wiki/Sinc_function

    The sinc function for a non-Cartesian lattice (e.g., hexagonal lattice) is a function whose Fourier transform is the indicator function of the Brillouin zone of that lattice. For example, the sinc function for the hexagonal lattice is a function whose Fourier transform is the indicator function of the unit hexagon in the frequency space. For a ...

  6. Optical transfer function - Wikipedia

    en.wikipedia.org/wiki/Optical_transfer_function

    Where a square wave pattern is used (simple black and white lines) not only is there more risk of aliasing, but account must be taken of the fact that the fundamental component of a square wave is higher than the amplitude of the square wave itself (the harmonic components reduce the peak amplitude).

  7. CORDIC - Wikipedia

    en.wikipedia.org/wiki/CORDIC

    CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...

  8. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.

  9. Haar wavelet - Wikipedia

    en.wikipedia.org/wiki/Haar_wavelet

    The Haar wavelet. In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis.