Search results
Results from the WOW.Com Content Network
The semantics of priority queues naturally suggest a sorting method: insert all the elements to be sorted into a priority queue, and sequentially remove them; they will come out in sorted order. This is actually the procedure used by several sorting algorithms , once the layer of abstraction provided by the priority queue is removed.
Binary heaps are a common way of implementing priority queues. [1]: 162–163 The binary heap was introduced by J. W. J. Williams in 1964 as a data structure for implementing heapsort. [2] A binary heap is defined as a binary tree with two additional constraints: [3]
Priority queue: A priority queue is an abstract concept like "a list" or "a map"; just as a list can be implemented with a linked list or an array, a priority queue can be implemented with a heap or a variety of other methods. K-way merge: A heap data structure is useful to merge many already-sorted input streams into a single sorted output ...
Earliest deadline first (EDF) or least time to go is a dynamic priority scheduling algorithm used in real-time operating systems to place processes in a priority queue. Whenever a scheduling event occurs (task finishes, new task released, etc.) the queue will be searched for the process closest to its deadline.
This makes the min-max heap a very useful data structure to implement a double-ended priority queue. Like binary min-heaps and max-heaps, min-max heaps support logarithmic insertion and deletion and can be built in linear time. [3] Min-max heaps are often represented implicitly in an array; [4] hence it's referred to as an implicit data structure.
A bucket queue is a data structure that implements the priority queue abstract data type: it maintains a dynamic collection of elements with numerical priorities and allows quick access to the element with minimum (or maximum) priority. In the bucket queue, the priorities must be integers, and it is particularly suited to applications in which ...
Skip lists are also used in distributed applications (where the nodes represent physical computers, and pointers represent network connections) and for implementing highly scalable concurrent priority queues with less lock contention, [17] or even without locking, [18] [19] [20] as well as lock-free concurrent dictionaries. [21]
The k-way merge problem consists of merging k sorted arrays to produce a single sorted array with the same elements.Denote by n the total number of elements. n is equal to the size of the output array and the sum of the sizes of the k input arrays.