enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, =, = = This property is also known as the rule of zero product, the null factor law, the multiplication property of zero, the nonexistence of nontrivial zero divisors, or one of the two zero-factor properties.

  3. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    If the cross product of two vectors is the zero vector (that is, a × b = 0), then either one or both of the inputs is the zero vector, (a = 0 or b = 0) or else they are parallel or antiparallel (a ∥ b) so that the sine of the angle between them is zero (θ = 0° or θ = 180° and sin θ = 0). The self cross product of a vector is the zero ...

  4. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    Dot product. In mathematics, the dot product or scalar product[ note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors ), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the inner product (or ...

  5. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Specifically, the divergence of a vector is a scalar. The divergence of a higher-order tensor field may be found by decomposing the tensor field into a sum of outer products and using the identity, where is the directional derivative in the direction of multiplied by its magnitude. Specifically, for the outer product of two vectors,

  6. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    t. e. In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as or in Leibniz's notation as. The rule may be extended or generalized to products of three or more functions, to a rule for ...

  7. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the ...

  8. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    In mathematics, the tensor product of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map that maps a pair to an element of denoted ⁠ ⁠ . An element of the form is called the tensor product of v and w. An element of is a tensor, and the tensor product of two vectors is sometimes called an ...

  9. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    Trace (linear algebra) In linear algebra, the trace of a square matrix A, denoted tr (A), [1] is defined to be the sum of elements on the main diagonal (from the upper left to the lower right) of A. The trace is only defined for a square matrix ( n × n ). In mathematical physics texts, if tr (A) = 0 then the matrix is said to be traceless.