Search results
Results from the WOW.Com Content Network
The data set [90, 100, 110] has more variability. Its standard deviation is 10 and its average is 100, giving the coefficient of variation as 10 / 100 = 0.1; The data set [1, 5, 6, 8, 10, 40, 65, 88] has still more variability. Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18
In statistics, McKay's approximation of the coefficient of variation is a statistic based on a sample from a normally distributed population. It was introduced in 1932 by A. T. McKay. [1] Statistical methods for the coefficient of variation often utilizes McKay's approximation. [2] [3] [4] [5]
The values of these parameters can be found in any PV module data sheet; they are the following: – β Coefficient of variation of VOC with respect to T, given by ∂VOC/∂T. – α Coefficient of variation of ISC with respect to T, given by ∂ISC/∂T. – δ Coefficient of variation of Pmax with respect to T, given by ∂Pmax/∂T.
The formula for the variation around the mode (ModVR) is derived as follows: = = where f m is the modal frequency, K is the number of categories and f i is the frequency of the i th group. This can be simplified to = where N is the total size of the sample.
It is named the hyperexponential distribution since its coefficient of variation is greater than that of the exponential distribution, whose coefficient of variation is 1, and the hypoexponential distribution, which has a coefficient of variation smaller than one.
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
By that reasoning, Miami’s playoff hopes are toast barring an unexpected blowout loss for a team like Penn State or Georgia in their conference title games on Saturday that somehow drops one or ...
Kingman's approximation states: () (+)where () is the mean waiting time, τ is the mean service time (i.e. μ = 1/τ is the service rate), λ is the mean arrival rate, ρ = λ/μ is the utilization, c a is the coefficient of variation for arrivals (that is the standard deviation of arrival times divided by the mean arrival time) and c s is the coefficient of variation for service times.