Search results
Results from the WOW.Com Content Network
Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [ 2 ] [ 3 ] Mantle convection causes tectonic plates to move around the Earth's surface.
A mantle plume is a proposed mechanism of convection within the Earth's mantle, hypothesized to explain anomalous volcanism. [2] Because the plume head partially melts on reaching shallow depths, a plume is often invoked as the cause of volcanic hotspots , such as Hawaii or Iceland , and large igneous provinces such as the Deccan and Siberian ...
Tectonophysics is concerned with movements in the Earth's crust and deformations over scales from meters to thousands of kilometers. [2] These govern processes on local and regional scales and at structural boundaries, such as the destruction of continental crust (e.g. gravitational instability) and oceanic crust (e.g. subduction), convection in the Earth's mantle (availability of melts), the ...
The current mantle plume theory is that material and energy from Earth's interior are exchanged with the surface crust in two distinct modes: the predominant, steady state plate tectonic regime driven by upper mantle convection, and a punctuated, intermittently dominant, mantle overturn regime driven by plume convection. [5]
Geodynamics is a subfield of geophysics dealing with dynamics of the Earth.It applies physics, chemistry and mathematics to the understanding of how mantle convection leads to plate tectonics and geologic phenomena such as seafloor spreading, mountain building, volcanoes, earthquakes, faulting.
Because of the perceived fixity of some volcanic sources relative to the plates, he proposed that this thermal boundary was deeper than the convecting upper mantle on which the plates ride and located it at the core-mantle boundary, 3,000 km beneath the surface. He suggested that narrow convection currents rise from fixed points at this thermal ...
The pulling effect of the slab as it goes down into the mantle causes a rollback motion of the trench, which also applies stress on the back-arc region of the upper plate. [2] However, this last process has less of an impact on deformation compared to upper plate motion. [2] Back-arcs can form on either oceanic crust or continental crust.
Numerical models of mantle convection in which the viscosity is dependent both on temperature and strain rate reliably produce an oceanic asthenosphere, suggesting that strain-rate weakening is a significant contributing mechanism, [24] and explaining the particularly weak asthenosphere below the Pacific plate. [23]