Search results
Results from the WOW.Com Content Network
A compressed fluid (also called a compressed or unsaturated liquid, [1] subcooled fluid or liquid) is a fluid under mechanical or thermodynamic conditions that force it to be a liquid. [2] At a given pressure, a fluid is a compressed fluid if it is at a temperature lower than the saturation temperature. This is the case, for example, for liquid ...
q is the dynamic pressure in pascals (i.e., kg/(m*s 2), ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.
Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.
The pressure on a pressure-temperature diagram (such as the water phase diagram shown) is the partial pressure of the substance in question. [1] The solidus is the temperature below which the substance is stable in the solid state. The liquidus is the temperature above which the substance is stable in a liquid state.
Thermodynamic diagrams are diagrams used to represent the thermodynamic states of a material (typically fluid) and the consequences of manipulating this material. For instance, a temperature–entropy diagram (T–s diagram) may be used to demonstrate the behavior of a fluid as it is changed by a compressor.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C.
of zero indicates the pressure is the same as the freestream pressure. of one corresponds to the stagnation pressure and indicates a stagnation point. the most negative values of in a liquid flow can be summed to the cavitation number to give the cavitation margin. If this margin is positive, the flow is locally fully liquid, while if it is ...