Search results
Results from the WOW.Com Content Network
If these conditions are true, then k is a Poisson random variable; the distribution of k is a Poisson distribution. The Poisson distribution is also the limit of a binomial distribution, for which the probability of success for each trial equals λ divided by the number of trials, as the number of trials approaches infinity (see Related ...
Another generalization of variance for vector-valued random variables , which results in a scalar value rather than in a matrix, is the generalized variance (), the determinant of the covariance matrix. The generalized variance can be shown to be related to the multidimensional scatter of points around their mean.
10.6 Poisson process ... the square root of the variance, ... An absolutely continuous random variable is a random variable whose probability distribution is ...
The term "random variable" in statistics is traditionally limited to the real-valued case (=). In this case, the structure of the real numbers makes it possible to define quantities such as the expected value and variance of a random variable, its cumulative distribution function, and the moments of its distribution.
In probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution.
A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables. Negative binomial regression is a popular generalization of Poisson regression because it loosens the highly restrictive assumption that the variance is equal to the mean made by the Poisson model. The traditional negative ...
Poisson-type random measures are a family of three random counting measures which are closed under restriction to a subspace, i.e. closed under thinning. They are the only distributions in the canonical non-negative power series family of distributions to possess this property and include the Poisson distribution, negative binomial distribution, and binomial distribution. [1]
Probability generating functions are particularly useful for dealing with functions of independent random variables. For example: If , =,,, is a sequence of independent (and not necessarily identically distributed) random variables that take on natural-number values, and