Search results
Results from the WOW.Com Content Network
Lithium imide is an inorganic compound with the chemical formula Li 2 N H. This white solid can be formed by a reaction between lithium amide and lithium hydride. [1] LiNH 2 + LiH → Li 2 NH + H 2. The product is light-sensitive and can undergo disproportionation to lithium amide and characteristically red lithium nitride. 2 Li 2 NH → LiNH 2 ...
Lithium peroxide is the inorganic compound with the formula Li 2 O 2. Lithium peroxide is a white solid, and unlike most other alkali metal peroxides, it is nonhygroscopic. Because of its high oxygen:mass and oxygen:volume ratios, the solid has been used to remove CO 2 from and release O 2 to the atmosphere in spacecraft. [4]
In organic chemistry, an imide is a functional group consisting of two acyl groups bound to nitrogen. [1] The compounds are structurally related to acid anhydrides , although imides are more resistant to hydrolysis.
Heating lithium amide with lithium hydride yields lithium imide and hydrogen gas. This reaction takes place as released ammonia reacts with lithium hydride. [2] Heating magnesium amide to about 400 °C yields magnesium imide with the loss of ammonia. Magnesium imide itself decomposes if heated between 455 and 490 °C. [6]
Lithium amide or lithium azanide is an inorganic compound with the chemical formula LiNH 2. It is a white solid with a tetragonal crystal structure. [1] Lithium amide can be made by treating lithium metal with liquid ammonia: [2] 2 Li + 2 NH 3 → 2 LiNH 2 + H 2. Lithium amide decomposes into ammonia and lithium imide upon heating. [3]
Burning lithium metal produces lithium oxide. Lithium oxide forms along with small amounts of lithium peroxide when lithium metal is burned in the air and combines with oxygen at temperatures above 100 °C: [3] 4Li + O 2 → 2 Li 2 O. Pure Li 2 O can be produced by the thermal decomposition of lithium peroxide, Li 2 O 2, at 450 °C [3] [2] 2 Li ...
It is commonly used as Li-ion source in electrolytes for Li-ion batteries as a safer alternative to commonly used lithium hexafluorophosphate. [3] It is made up of one Li cation and a bistriflimide anion.
The oxidation of paraffins was carried out in the liquid phase by molecular oxygen, e.g. by aerating with oxygen or atmospheric air, in the presence of catalysts such as permanganates, e.g. 0.1% - 0.3% potassium permanganate, at temperatures in the range of about 100 to 120 °C and under atmospheric pressure.