Search results
Results from the WOW.Com Content Network
Nevertheless, anatase is often the first titanium dioxide phase to form in many processes due to its lower surface energy, with a transformation to rutile taking place at elevated temperatures. [7] Although the degree of symmetry is the same for both anatase and rutile phases, there is no relation between the interfacial angles of the two ...
Efforts to develop functional photocatalysts often emphasize extending exciton lifetime, improving electron-hole separation using diverse approaches that may rely on structural features such as phase hetero-junctions (e.g. anatase-rutile interfaces), noble-metal nanoparticles, silicon nanowires and substitutional cation doping. [23]
Rutile is an oxide mineral composed of titanium dioxide (TiO 2), the most common natural form of TiO 2. Rarer polymorphs of TiO 2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at visible wavelengths of any known crystal and also exhibits a particularly large birefringence and high ...
Rutile is the next most abundant and contains around 98% titanium dioxide in the ore. The metastable anatase and brookite phases convert irreversibly to the equilibrium rutile phase upon heating above temperatures in the range 600–800 °C (1,110–1,470 °F). [14]
The Becher process is a process to produce rutile, a form of titanium dioxide, from the ore ilmenite. Although it is competitive with the chloride process and the sulfate process, . [1] [2] the Becher process is not used on scale. [3] With the idealized formula FeTiO 3, ilmenite contains 55-65% titanium dioxide, the rest being iron oxide. The ...
Phase transitions (phase changes) that help describe polymorphism include polymorphic transitions as well as melting and vaporization transitions. According to IUPAC, a polymorphic transition is "A reversible transition of a solid crystalline phase at a certain temperature and pressure (the inversion point) to another phase of the same chemical composition with a different crystal structure."
In biochemistry, the committed step (also known as the first committed step) is an effectively irreversible, enzyme-catalyzed reaction that occurs at a branch point during the biosynthesis of some molecules. [1] [2] As the name implies, after this step, the molecules are "committed" to the pathway and will ultimately end up in the pathway's ...
Crystallization occurs in two major steps. The first is nucleation, the appearance of a crystalline phase from either a supercooled liquid or a supersaturated solvent. The second step is known as crystal growth, which is the increase in the size of particles and leads to a crystal state. An important feature of this step is that loose particles ...