Search results
Results from the WOW.Com Content Network
A bone scan or bone scintigraphy / s ɪ n ˈ t ɪ ɡ r ə f i / is a nuclear medicine imaging technique used to help diagnose and assess different bone diseases. These include cancer of the bone or metastasis , location of bone inflammation and fractures (that may not be visible in traditional X-ray images ), and bone infection (osteomyelitis).
A skeletal survey (also called a bone survey [1]) is a series of X-rays of all the bones in the body, or at least the axial skeleton and the large cortical bones. A very common use is the diagnosis of multiple myeloma , where tumour deposits appear as "punched-out" lesions.
In case of continued stress, a fracture line through the thickened cortex and a region of sclerosis may be observed. MRI is of great value for early diagnosis and displaying bone marrow edema, while scintigraphy is useful for showing increased metabolic activity within the bone. However, MRI is preferred since scintigraphy lacks specificity.
SPECT image (bone tracer) of a mouse MIP Collimator used to collimate gamma rays (red arrows) in a gamma camera. Single-photon emission computed tomography (SPECT, or less commonly, SPET) is a nuclear medicine tomographic imaging technique using gamma rays. [1]
Bone scintigraphy showing black marks where pelvic bone damage has occurred. Also known as a bone scan, bone scintigraphy involves the injection of a small amount of radioactive tracer into the bloodstream. This tracer decays and emits radioactive energy which can be detected by a special camera.
DXA is only able to provide the areal bone mineral density. High-resolution peripheral quantitative computed tomography (HR-pQCT) is better than DXA at detecting bone microarchitecture, modeling whole-bone geometry using 3-dimensional information from scans. This method allows estimation of bone strength and other mechanical properties. [20]
Scintigraphy (from Latin scintilla, "spark"), also known as a gamma scan, is a diagnostic test in nuclear medicine, where radioisotopes attached to drugs that travel to a specific organ or tissue (radiopharmaceuticals) are taken internally and the emitted gamma radiation is captured by gamma cameras, which are external detectors that form two-dimensional images [1] in a process similar to the ...
DXA BMD results adjusted in this manner are referred to as the bone mineral apparent density (BMAD) and are a ratio of the bone mineral content versus a cuboidal estimation of the volume of bone. Like the results for aBMD, BMAD results do not accurately represent true bone mineral density, since they use approximations of the bone's volume.