enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric derivative - Wikipedia

    en.wikipedia.org/wiki/Symmetric_derivative

    The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist. [1] [2]: 6 Neither Rolle's theorem nor the mean-value theorem hold for the symmetric derivative; some similar but weaker statements have been proved.

  3. Symmetric function - Wikipedia

    en.wikipedia.org/wiki/Symmetric_function

    In statistics, an -sample statistic (a function in variables) that is obtained by bootstrapping symmetrization of a -sample statistic, yielding a symmetric function in variables, is called a U-statistic. Examples include the sample mean and sample variance.

  4. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.

  5. Semi-differentiability - Wikipedia

    en.wikipedia.org/wiki/Semi-differentiability

    If the left and right derivatives are equal, then they have the same value as the usual ("bidirectional") derivative. One can also define a symmetric derivative , which equals the arithmetic mean of the left and right derivatives (when they both exist), so the symmetric derivative may exist when the usual derivative does not.

  6. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    Sigmoid curves are also common in statistics as cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic density, the normal density, and Student's t probability density functions. The logistic sigmoid function is invertible, and its inverse is the logit function.

  7. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    The derivative of an integrable function can always be defined as a distribution, and symmetry of mixed partial derivatives always holds as an equality of distributions. The use of formal integration by parts to define differentiation of distributions puts the symmetry question back onto the test functions , which are smooth and certainly ...

  8. Econometrics - Wikipedia

    en.wikipedia.org/wiki/Econometrics

    Econometrics is an application of statistical methods to economic data in order to give empirical content to economic relationships. [1] More precisely, it is "the quantitative analysis of actual economic phenomena based on the concurrent development of theory and observation, related by appropriate methods of inference."

  9. Symmetric probability distribution - Wikipedia

    en.wikipedia.org/wiki/Symmetric_probability...

    The distribution can be discrete or continuous, and the existence of a density is not required, but the inertia must be finite and non null. In the univariate case, this index was proposed as a non parametric test of symmetry. [2] For continuous symmetric spherical, Mir M. Ali gave the following definition.