Search results
Results from the WOW.Com Content Network
Delco ECU used in General Motors vehicles built in 1996. An engine control unit (ECU), also called an engine control module (ECM), [1] is a device that controls various subsystems of an internal combustion engine. Systems commonly controlled by an ECU include the fuel injection and ignition systems.
An electronic control unit (ECU), also known as an electronic control module (ECM), is an embedded system in automotive electronics that controls one or more of the electrical systems or subsystems in a car or other motor vehicle.
A full authority digital engine (or electronics) control (FADEC) is a system consisting of a digital computer, called an "electronic engine controller" (EEC) or "engine control unit" (ECU), and its related accessories that control all aspects of aircraft engine performance.
The Ford EEC or Electronic Engine Control is a series of ECU (or Engine Control Unit) that was designed and built by Ford Motor Company. The first system, EEC I, used processors and components developed by Toshiba in 1973. It began production in 1974, and went into mass production in 1975. It subsequently went through several model iterations.
It is generally a combined controller consisting of the engine control unit (ECU) and the transmission control unit (TCU). On some cars, such as many Chryslers, there are multiple computers: the PCM, the TCU, and the Body Control Module (BCM), for a total of three separate computers. These automotive computers are generally very reliable.
The phase angle difference between voltage and current of each phase is not necessarily 0 and depends on the type of load impedance, Z y. Inductive and capacitive loads will cause current to either lag or lead the voltage. However, the relative phase angle between each pair of lines (1 to 2, 2 to 3, and 3 to 1) will still be −120°.
The Modular Engine Management System, or MEMS, is an electronic control system used on engines in passenger cars built by Rover Group in the 1990s. As its name implies, it was adaptable for a variety of engine management demands, including electronically controlled carburetion as well as single- and multi-point fuel injection (both with and without electronic ignition control).
The typical modern TCU uses signals from engine sensors, automatic transmission sensors and from other electronic controllers to determine when and how to shift. [2] More modern designs share inputs or obtain information from an input to the ECU, whereas older designs often have their own dedicated inputs and sensors on the engine components.