enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zippe-type centrifuge - Wikipedia

    en.wikipedia.org/wiki/Zippe-type_centrifuge

    Natural uranium consists of three isotopes; the majority (99.274%) is U-238, while approximately 0.72% is U-235, fissile by thermal neutrons, and the remaining 0.0055% is U-234. If natural uranium is enriched to 3% U-235, it can be used as fuel for light water nuclear reactors. If it is enriched to 90% uranium-235, it can be used for nuclear ...

  3. Weapons-grade nuclear material - Wikipedia

    en.wikipedia.org/wiki/Weapons-grade_nuclear_material

    Natural uranium is made weapons-grade through isotopic enrichment. Initially only about 0.7% of it is fissile U-235, with the rest being almost entirely uranium-238 (U-238). They are separated by their differing masses. Highly enriched uranium is considered weapons-grade when it has been enriched to about 90% U-235. [citation needed]

  4. Enriched uranium - Wikipedia

    en.wikipedia.org/wiki/Enriched_uranium

    Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235 U) has been increased through the process of isotope separation.Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 U with 99.2732–99.2752% natural abundance), uranium-235 (235 U, 0.7198–0.7210%), and uranium-234 (234 U, 0.0049–0.0059%).

  5. Centrus Energy - Wikipedia

    en.wikipedia.org/wiki/Centrus_Energy

    In June 2021, the U.S. Nuclear Regulatory Commission approved a license amendment request for Centrus to enrich uranium up to a Uranium-235 concentration of 20 percent, making it the first U.S. facility licensed for HALEU production. This is higher than the 5 percent level found in Low-Enriched Uranium that is used in existing light-water reactors.

  6. Separation of isotopes by laser excitation - Wikipedia

    en.wikipedia.org/wiki/Separation_of_isotopes_by...

    Infrared absorption spectra of the two UF 6 isotopes at 300 and 80 K. Schematic of a stage of an isotope separation plant for uranium enrichment with laser. An infrared laser with a wavelength of approx. 16 μm radiates at a high repetition rate onto a UF6 carrier gas mixture, which flows supersonically out of a laval nozzle.

  7. Orano USA will build a multibillion-dollar uranium enrichment ...

    www.aol.com/orano-usa-build-multibillion-dollar...

    Orano, the France-based parent company of Orano USA, is a world leader in the nuclear fuel supply chain, from its uranium mines in Canada, Kazakhstan and Niger, to its methods of recycling used ...

  8. Feds announces contracts for U.S.-sourced uranium - AOL

    www.aol.com/news/feds-announces-contracts-u...

    The Department of Energy will acquire the low-enriched uranium, or LEU, generated in the U.S. through either new enrichment facilities or projects that Feds announces contracts for U.S.-sourced ...

  9. Helikon vortex separation process - Wikipedia

    en.wikipedia.org/wiki/Helikon_vortex_separation...

    The Uranium Enrichment Corporation of South Africa, Ltd. (UCOR) developed the process, operating a facility at Pelindaba (known as the 'Y' plant) to produce hundreds of kilograms of HEU. Aerodynamic enrichment processes require large amounts of electricity and are not generally considered economically competitive because of high energy ...