enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property. Geometrically, the square root of 2 is the length of a diagonal across a square with sides of one unit of length; this follows from the Pythagorean theorem. It was probably the first number known to be irrational. [1]

  3. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    The proof by Pythagoras about 500 BCE has had a profound effect on mathematics. It shows that the square root of 2 cannot be expressed as the ratio of two integers. The proof bifurcated "the numbers" into two non-overlapping collections—the rational numbers and the irrational numbers.

  4. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    The classic proof that the square root of 2 is irrational is a refutation by contradiction. [11] Indeed, we set out to prove the negation ¬ ∃ a, b ∈ . a/b = √ 2 by assuming that there exist natural numbers a and b whose ratio is the square root of two, and derive a contradiction.

  5. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    The square root of 2 was likely the first number proved irrational. [27] The golden ratio is another famous quadratic irrational number. The square roots of all natural numbers that are not perfect squares are irrational and a proof may be found in quadratic irrationals.

  6. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    For example, direct proof can be used to prove that the sum of two even integers is always even: Consider two even integers x and y. Since they are even, they can be written as x = 2a and y = 2b, respectively, for some integers a and b. Then the sum is x + y = 2a + 2b = 2(a+b). Therefore x+y has 2 as a factor and, by definition, is even. Hence ...

  7. Gelfond–Schneider constant - Wikipedia

    en.wikipedia.org/wiki/Gelfond–Schneider_constant

    The square root of the Gelfond–Schneider constant is the transcendental number = 1.632 526 919 438 152 844 77.... This same constant can be used to prove that "an irrational elevated to an irrational power may be rational", even without first proving its transcendence.

  8. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    The square root of 2 is irrational, and 3 is rational. ⁡ is also irrational: if it were equal to , then, by the properties of logarithms, 9 n would be equal to 2 m, but the former is odd, and the latter is even. A more substantial example is the graph minor theorem.

  9. Mathematical constant - Wikipedia

    en.wikipedia.org/wiki/Mathematical_constant

    The square root of 2, often known as root 2 or Pythagoras' constant, and written as √ 2, is the unique positive real number that, when multiplied by itself, gives the number 2. It is more precisely called the principal square root of 2 , to distinguish it from the negative number with the same property.