Search results
Results from the WOW.Com Content Network
Fermat's little theorem. In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number ap − a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as. For example, if a = 2 and p = 7, then 27 = 128, and 128 − 2 = 126 = 7 × 18 is an integer multiple of 7.
If 2 k + 1 is prime and k > 0, then k itself must be a power of 2, [1] so 2 k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023 [update] , the only known Fermat primes are F 0 = 3 , F 1 = 5 , F 2 = 17 , F 3 = 257 , and F 4 = 65537 (sequence A019434 in the OEIS ).
It is divisible by 2 and by 9. [6] 342: it is divisible by 2 and by 9. 19: Add twice the last digit to the rest. (Works because (10a + b) × 2 − 19a = a + 2b; since 19 is a prime and 2 is coprime with 19, a + 2b is divisible by 19 if and only if 10a + b is.) 437: 43 + 7 × 2 = 57. Add 4 times the last two digits to the rest.
Coprime integers. In number theory, two integers a and b are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. [1] Consequently, any prime number that divides a does not divide b, and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. [2]
Perfect number. In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2] Since the problem had withstood the attacks of ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Bisection method. A few steps of the bisection method applied over the starting range [a 1;b 1]. The bigger red dot is the root of the function. In mathematics, the bisection method is a root-finding method that applies to any continuous function for which one knows two values with opposite signs. The method consists of repeatedly bisecting the ...