enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Non-sampling error - Wikipedia

    en.wikipedia.org/wiki/Non-sampling_error

    Non-sampling errors are much harder to quantify than sampling errors. [2] Non-sampling errors in survey estimates can arise from: [3] Coverage errors, such as failure to accurately represent all population units in the sample, or the inability to obtain information about all sample cases; Response errors by respondents due for example to ...

  3. Coverage error - Wikipedia

    en.wikipedia.org/wiki/Coverage_error

    At a later date, another sample is then taken from the population (re-capture), and the proportion of previously marked samples is used to estimate the actual population size. This method can be extended to determining the validity of a sampling frame by taking a sample directly from the target population and then taking another sample from the ...

  4. Convenience sampling - Wikipedia

    en.wikipedia.org/wiki/Convenience_sampling

    The results of the convenience sampling cannot be generalized to the target population because of the potential bias of the sampling technique due to the under-representation of subgroups in the sample in comparison to the population of interest. The bias of the sample cannot be measured. Therefore, inferences based on convenience sampling ...

  5. Total survey error - Wikipedia

    en.wikipedia.org/wiki/Total_survey_error

    Sampling error, which occurs in sample surveys but not censuses results from the variability inherent in using a randomly selected fraction of the population for estimation. Nonsampling error, which occurs in surveys and censuses alike, is the sum of all other errors, including errors in frame construction, sample selection, data collection ...

  6. Multiple comparisons problem - Wikipedia

    en.wikipedia.org/wiki/Multiple_comparisons_problem

    However, if one considers 100 confidence intervals simultaneously, each with 95% coverage probability, the expected number of non-covering intervals is 5. If the intervals are statistically independent from each other, the probability that at least one interval does not contain the population parameter is 99.4%.

  7. Selection bias - Wikipedia

    en.wikipedia.org/wiki/Selection_bias

    A distinction of sampling bias (albeit not a universally accepted one) is that it undermines the external validity of a test (the ability of its results to be generalized to the rest of the population), while selection bias mainly addresses internal validity for differences or similarities found in the sample at hand. In this sense, errors ...

  8. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    For example, if the mean height in a population of 21-year-old men is 1.75 meters, and one randomly chosen man is 1.80 meters tall, then the "error" is 0.05 meters; if the randomly chosen man is 1.70 meters tall, then the "error" is −0.05 meters.

  9. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    The probability of type I errors is called the "false reject rate" (FRR) or false non-match rate (FNMR), while the probability of type II errors is called the "false accept rate" (FAR) or false match rate (FMR). If the system is designed to rarely match suspects then the probability of type II errors can be called the "false alarm rate". On the ...