enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Viola–Jones object detection framework - Wikipedia

    en.wikipedia.org/wiki/Viola–Jones_object...

    The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes. In short, it consists of a sequence of classifiers.

  3. Haar-like feature - Wikipedia

    en.wikipedia.org/wiki/Haar-like_feature

    The position of these rectangles is defined relative to a detection window that acts like a bounding box to the target object (the face in this case). In the detection phase of the Viola–Jones object detection framework , a window of the target size is moved over the input image, and for each subsection of the image the Haar-like feature is ...

  4. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Classification, object detection, object localization 2017 [52] M. Kragh et al. Daimler Monocular Pedestrian Detection dataset It is a dataset of pedestrians in urban environments. Pedestrians are box-wise labeled. Labeled part contains 15560 samples with pedestrians and 6744 samples without. Test set contains 21790 images without labels. Images

  5. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    SIFT keypoints of objects are first extracted from a set of reference images [1] and stored in a database. An object is recognized in a new image by individually comparing each feature from the new image to this database and finding candidate matching features based on Euclidean distance of their feature vectors. From the full set of matches ...

  6. Canny edge detector - Wikipedia

    en.wikipedia.org/wiki/Canny_edge_detector

    Canny edge detection is a technique to extract useful structural information from different vision objects and dramatically reduce the amount of data to be processed. It has been widely applied in various computer vision systems.

  7. Foreground detection - Wikipedia

    en.wikipedia.org/wiki/Foreground_detection

    All detection techniques are based on modelling the background of the image, i.e. set the background and detect which changes occur. Defining the background can be very difficult when it contains shapes, shadows, and moving objects. In defining the background, it is assumed that the stationary objects could vary in color and intensity over time.

  8. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    Pyramid match kernel is newly developed one based on the BoW model. The local feature approach of using BoW model representation learnt by machine learning classifiers with different kernels (e.g., EMD-kernel and kernel) has been vastly tested in the area of texture and object recognition. [12]

  9. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]