Search results
Results from the WOW.Com Content Network
Since the function cosh x is even, only even exponents for x occur in its Taylor series. The sum of the sinh and cosh series is the infinite series expression of the exponential function . The following series are followed by a description of a subset of their domain of convergence , where the series is convergent and its sum equals the function.
The argument to the hyperbolic functions is a hyperbolic angle measure. In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant ...
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite to that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to ...
Since cosh x + sinh x = e x, an analog to de Moivre's formula also applies to the hyperbolic trigonometry. For all integers n, ( + ) = + . If n is a rational number (but not necessarily an integer), then cosh nx + sinh nx will be one of the values of (cosh x + sinh x) n. [4]
For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions. The ISO 80000-2 standard uses the prefix "ar-" rather than "arc-" for the inverse hyperbolic functions; we do that here.
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
The even and odd terms of this series provide sums denoting cosh(x) and sinh(x), so that = + . These transcendental hyperbolic functions can be converted into circular functions sine and cosine by introducing (−1) k into the series, resulting in alternating series.