Search results
Results from the WOW.Com Content Network
Orthostochastic matrix — doubly stochastic matrix whose entries are the squares of the absolute values of the entries of some orthogonal matrix; Precision matrix — a symmetric n×n matrix, formed by inverting the covariance matrix. Also called the information matrix. Stochastic matrix — a non-negative matrix describing a stochastic ...
Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let Mat n {\displaystyle {\mbox{Mat}}_{n}} denote the space of n × n {\displaystyle n\times n} matrices.
A Jacobi operator, also known as Jacobi matrix, is a symmetric linear operator acting on sequences which is given by an infinite tridiagonal matrix. It is commonly used to specify systems of orthonormal polynomials over a finite, positive Borel measure. This operator is named after Carl Gustav Jacob Jacobi.
The symmetrically normalized Laplacian is a symmetric matrix if and only if the adjacency matrix A is symmetric and the diagonal entries of D are nonnegative, in which case we can use the term the symmetric normalized Laplacian. The symmetric normalized Laplacian matrix can be also written as
In case of a symmetric matrix it is the largest absolute value of its eigenvectors and thus equal to its spectral radius. Condition number The condition number of a nonsingular matrix is defined as = ‖ ‖ ‖ ‖. In case of a symmetric matrix it is the absolute value of the quotient of the largest and smallest eigenvalue.
A square matrix is said to be in lower Hessenberg form or to be a lower Hessenberg matrix if its transpose is an upper Hessenberg matrix or equivalently if , = for all , with > +. A lower Hessenberg matrix is called unreduced if all superdiagonal entries are nonzero, i.e. if a i , i + 1 ≠ 0 {\displaystyle a_{i,i+1}\neq 0} for all i ∈ { 1 ...
In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...
In matrix theory and combinatorics, a Pascal matrix is a matrix (possibly infinite) containing the binomial coefficients as its elements. It is thus an encoding of Pascal's triangle in matrix form. There are three natural ways to achieve this: as a lower-triangular matrix, an upper-triangular matrix, or a symmetric matrix. For example, the 5 × ...