Search results
Results from the WOW.Com Content Network
The arc length, from the familiar geometry of a circle, is s = θ R {\displaystyle s={\theta }R} The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of θ {\displaystyle \theta } ):
In geometry, a disk (also spelled disc) [1] is the region in a plane bounded by a circle. A disk is said to be closed if it contains the circle that constitutes its boundary, and open if it does not. [2] For a radius, , an open disk is usually denoted as and a closed disk is ¯.
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that
[17] [nb 3] If the boot loader code is IBM compatible, it is important to ensure that the checksum over the boot sector does not match this checksum by accident. If this would happen to be the case, changing an unused bit (e.g., before or after the boot code area) can be used to ensure this condition is not met.
The minor sector is shaded in green while the major sector is shaded white. A circular sector, also known as circle sector or disk sector or simply a sector (symbol: ⌔), is the portion of a disk (a closed region bounded by a circle) enclosed by two radii and an arc, with the smaller area being known as the minor sector and the larger being the major sector. [1]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
Because this stretch is a linear transformation of the plane, it has a distortion factor which will change the area but preserve ratios of areas. This observation can be used to compute the area of an arbitrary ellipse from the area of a unit circle. Consider the unit circle circumscribed by a square of side length 2.