Search results
Results from the WOW.Com Content Network
inhaled carbon monoxide induces unconsciousness in 2–3 breaths and death in < 3 min (12 800 ppm) [15] 10 −3: mM 0.32–32 mM: normal range of hydronium ions in stomach acid (pH 1.5–3.5) [16] 5.5 mM: upper bound for healthy blood glucose when fasting [17] 7.8 mM: upper bound for healthy blood glucose 2 hours after eating [17] 10 −2: cM 20 mM
In chemistry, the most commonly used unit for molarity is the number of moles per liter, having the unit symbol mol/L or mol/dm 3 in SI units. A solution with a concentration of 1 mol/L is said to be 1 molar , commonly designated as 1 M or 1 M .
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
The numbers 200-900 would be confused easily with 22 to 29 if they were used in chemistry. khīlioi = 1000, diskhīlioi = 2000, triskhīlioi = 3000, etc. 13 to 19 are formed by starting with the Greek word for the number of ones, followed by και (the Greek word for 'and'), followed by δέκα (the Greek word for 'ten').
No standard symbols are used for the following quantities, as specifically applied to a substance: the mass of a substance m, the number of moles of the substance n, partial pressure of a gas in a gaseous mixture p (or P), some form of energy of a substance (for chemistry enthalpy H is common), entropy of a substance S
Dm3 may refer to: Cubic decimetre ( d m 3 {\displaystyle dm^{3}} ), a volume unit which is exactly equivalent to a litre SJ Dm3 locomotives pulling iron ore trains in Sweden and Norway
A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]
For example, sulfuric acid (H 2 SO 4) is a diprotic acid. Since only 0.5 mol of H 2 SO 4 are needed to neutralize 1 mol of OH −, the equivalence factor is: f eq (H 2 SO 4) = 0.5. If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be called a "2 normal" solution.