enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Like distinct-degree factorization algorithm, Rabin's algorithm [5] is based on the Lemma stated above. Distinct-degree factorization algorithm tests every d not greater than half the degree of the input polynomial. Rabin's algorithm takes advantage that the factors are not needed for considering fewer d. Otherwise, it is similar to distinct ...

  3. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    Miller–Rabin primality test. The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a ...

  4. Rabin fingerprint - Wikipedia

    en.wikipedia.org/wiki/Rabin_fingerprint

    Given an n-bit message m 0,...,m n-1, we view it as a polynomial of degree n-1 over the finite field GF(2). = + + … +We then pick a random irreducible polynomial ⁠ ⁠ of degree k over GF(2), and we define the fingerprint of the message m to be the remainder () after division of () by () over GF(2) which can be viewed as a polynomial of degree k − 1 or as a k-bit number.

  5. Irreducibility (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Irreducibility_(mathematics)

    Irreducibility (mathematics) In mathematics, the concept of irreducibility is used in several ways. A polynomial over a field may be an irreducible polynomial if it cannot be factored over that field. In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial.

  6. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The Solovay–Strassen test is an Euler probable prime test (see PSW [3] page 1003). For each individual value of a, the Solovay–Strassen test is weaker than the Miller–Rabin test. For example, if n = 1905 and a = 2, then the Miller-Rabin test shows that n is composite, but the Solovay–Strassen

  7. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    For a concrete example one can take R = Z[i√5], p = 1 + i√5, a = 1 − i√5, q = 2, b = 3. In this example the polynomial 3 + 2 X + 2 X 2 (obtained by dividing the right hand side by q = 2 ) provides an example of the failure of the irreducibility statement (it is irreducible over R , but reducible over its field of fractions Q [ i √5] ).

  8. Computational irreducibility - Wikipedia

    en.wikipedia.org/wiki/Computational_irreducibility

    Marius Krumm and Markus P Muller tie computational irreducibility to Compatibilism. [1] They refine concepts via the intermediate requirement of a new concept called computational sourcehood that demands essentially full and almost-exact representation of features associated with problem or process represented, and a full no-shortcut computation.

  9. Baillie–PSW primality test - Wikipedia

    en.wikipedia.org/wiki/Baillie–PSW_primality_test

    The first step is for efficiency only. The Baillie–PSW test works without this step, but if n has small prime factors, then the quickest way to show that n is composite is to find a factor by trial division. Step 2 is, in effect, a single application of the Miller–Rabin primality test, but using the fixed base 2.