Search results
Results from the WOW.Com Content Network
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...
Calculus. In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. [1][2][3] Let , where both f and g are differentiable and The quotient rule states that the derivative of h(x) is. {\displaystyle h' (x)= {\frac {f' (x)g (x)-f (x)g' (x)} { (g (x))^ {2}}}.} It is ...
A form of the mean value theorem, where a < ξ < b, can be applied to the first and last integrals of the formula for Δ φ above, resulting in. Dividing by Δ α, letting Δ α → 0, noticing ξ1 → a and ξ2 → b and using the above derivation for yields. This is the general form of the Leibniz integral rule.
The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C ⋅ (A × B) = (C × A)⋅ B: An alternative method is to use the Cartesian components of the del operator as follows:
Pages in category "Differentiation rules". The following 11 pages are in this category, out of 11 total. This list may not reflect recent changes. Differentiation rules.
Calculus. In calculus, the product rule (or Leibniz rule[1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as or in Leibniz's notation as.
Numerical differentiation. Use of numerical analysis to estimate derivatives of functions. Finite difference estimation of derivative. In numerical analysis, numerical differentiation algorithms estimate the derivative of a mathematical function or function subroutine using values of the function and perhaps other knowledge about the function.
The problem of the differentiation of integrals is much harder in an infinite-dimensional setting. Consider a separable Hilbert space ( H , , ) equipped with a Gaussian measure γ . As stated in the article on the Vitali covering theorem , the Vitali covering theorem fails for Gaussian measures on infinite-dimensional Hilbert spaces.