Search results
Results from the WOW.Com Content Network
The geomagnetic north pole is the northern antipodal pole of an ideal dipole model of the Earth's magnetic field, which is the most closely fitting model of Earth's actual magnetic field. The north magnetic pole moves over time according to magnetic changes and flux lobe elongation [2] in the Earth's outer core. [3]
The Earth and most of the planets in the Solar System, as well as the Sun and other stars, all generate magnetic fields through the motion of electrically conducting fluids. [54] The Earth's field originates in its core. This is a region of iron alloys extending to about 3400 km (the radius of the Earth is 6370 km).
A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field (IMF) and by bulk motions ...
Computer simulation of the Earth's magnetic field in a period of normal polarity between reversals [2] Geophysics (/ ˌdʒiːoʊˈfɪzɪks /) is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis.
A telluric current (from Latin tellūs 'earth'), or Earth current, [1] is an electric current that flows underground or through the sea, resulting from natural and human-induced causes. These currents have extremely low frequency and traverse large areas near or at Earth 's surface. Earth's crust and mantle are host to telluric currents, with ...
Magnetosphere particle motion. A sketch of Earth's magnetic field representing the source of Earth's magnetic field as a magnet The North Pole of Earth is near the top of the diagram, the South Pole near the bottom. Notice that the South Pole of that magnet is deep in Earth's interior below Earth's North Magnetic Pole.
Magnetosphere. A rendering of the magnetic field lines of the magnetosphere of the Earth. In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. [1][2] It is created by a celestial body with an active interior dynamo.
Researchers have developed global models using MHD to simulate phenomena within Earth's magnetosphere, such as the location of Earth's magnetopause [24] (the boundary between the Earth's magnetic field and the solar wind), the formation of the ring current, auroral electrojets, [25] and geomagnetically induced currents.