Search results
Results from the WOW.Com Content Network
Single-cell DNA genome sequencing involves isolating a single cell, amplifying the whole genome or region of interest, constructing sequencing libraries, and then applying next-generation DNA sequencing (for example Illumina, Ion Torrent). Single-cell DNA sequencing has been widely applied in mammalian systems to study normal physiology and ...
Detecting differences in gene expression level between two populations is used both single-cell and bulk transcriptomic data. Specialised methods have been designed for single-cell data that considers single cell features such as technical dropouts and shape of the distribution e.g. Bimodal vs. unimodal. [23]
This single cell shows the process of the central dogma of molecular biology, which are all steps researchers are interested to quantify (DNA, RNA, and Protein).. In cell biology, single-cell analysis and subcellular analysis [1] refer to the study of genomics, transcriptomics, proteomics, metabolomics, and cell–cell interactions at the level of an individual cell, as opposed to more ...
TCR sequencing can be performed in on pooled cell populations (“bulk sequencing”) or single cells (“single cell sequencing”). [4] Bulk sequencing is useful to explore entire TCR repertoires - all the TCRs within an individual or a sample - and to generate comparisons between repertoires of different individuals. [4] This method can ...
Has a graphical user interface, can combine diverse sequencing technologies, has no transcriptome-specific features, and a licence must be purchased before use. SPAdes [126] 2012 2017 High, multi-thread, low RAM requirement Used for transcriptomics experiments on single cells. RSEM [127] 2011 2017 High, multi-thread, low RAM requirement
G&T-seq (short for single cell genome and transcriptome sequencing) is a novel form of single cell sequencing technique allowing one to simultaneously obtain both transcriptomic and genomic data from single cells, allowing for direct comparison of gene expression data to its corresponding genomic data in the same cell...
A list of more than 100 different single cell sequencing (omics) methods have been published. [1] The large majority of methods are paired with short-read sequencing technologies, although some of them are compatible with long read sequencing.
Single-cell omics technologies has extended beyond the transcriptome to profile diverse physical-chemical properties at single-cell resolution, including whole genomes/exomes, DNA methylation, chromatin accessibility, histone modifications, epitranscriptome (e.g., mRNAs, microRNAs, tRNAs, lncRNAs), proteome, phosphoproteome, metabolome, and more.