Search results
Results from the WOW.Com Content Network
It is a calculation of the Minimum Breaking Strength (MBS) also known as Minimum Breaking Load (MBL) divided by a safety factor, usually ranging from 4 to 6 on lifting equipment. The factor can be as high as 10:1 or 10 to 1, if the equipment poses a risk to a person's life.
In engineering, a factor of safety (FoS) or safety factor (SF) expresses how much stronger a system is than it needs to be for an intended load.Safety factors are often calculated using detailed analysis because comprehensive testing is impractical on many projects, such as bridges and buildings, but the structure's ability to carry a load must be determined to a reasonable accuracy.
Lifting equipment, also known as lifting gear, is a general term for any equipment that can be used to lift and lower loads. [1] Types of lifting equipment include heavy machinery such as the patient lift , overhead cranes , forklifts , jacks , building cradles, and passenger lifts, and can also include smaller accessories such as chains ...
Anchor capacity, or load resistance, should be considered for tensile loads (axial), sling angle (angular) and shear loads (transverse). Consideration of different load combinations may result in wide variations required from the lifting insert. The load directions during production, transport and placement should be considered carefully.
For normal weight concrete (defined as concrete with a w c of 150 lb/ft 3 and subtracting 5 lb/ft 3 for steel) E c is permitted to be taken as ′. The publication used by structural bridge engineers is the AASHTO Load and Resistance Factor Design Manual, or "LRFD."
In the Eurocode series of European standards (EN) related to construction, Eurocode 1: Actions on structures (abbreviated EN 1991 or, informally, EC 1) describes how to design load-bearing structures. It includes characteristic values for various types of loads and densities for all materials which are likely to be used in construction.
Such loads may include pressure thrusts and the weight of materials. The predicted stresses and deflections are compared with allowable values that have a "factor" against various failure mechanisms such as leakage, yield, ultimate load prior to plastic failure, buckling, brittle fracture, fatigue, and vibration/harmonic effects.
The test is carried out using a metal mould in the shape of a conical frustum known as a slump cone or Abrams cone, that is open at both ends and has attached handles.The tool typically has an internal diameter of 100 millimetres (3.9 in) at the top and of 200 millimetres (7.9 in) at the bottom with a height of 305 millimetres (12.0 in).The cone is placed on a hard non-absorbent surface.