Search results
Results from the WOW.Com Content Network
Symmetry (geometry) A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under ...
In geometry, a two-dimensional point group or rosette group is a group of geometric symmetries (isometries) that keep at least one point fixed in a plane. Every such group is a subgroup of the orthogonal group O (2), including O (2) itself. Its elements are rotations and reflections, and every such group containing only rotations is a subgroup ...
In affine geometry, uniform scaling (or isotropic scaling[1]) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions (isotropically). The result of uniform scaling is similar (in the geometric sense) to the original. A scale factor of 1 is normally allowed, so ...
Lines through a given point P and asymptotic to line R. Non-intersecting lines in hyperbolic geometry also have properties that differ from non-intersecting lines in Euclidean geometry: For any line R and any point P which does not lie on R, in the plane containing line R and point P there are at least two distinct lines through P that do not ...
Duality (projective geometry) In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by points and lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one through language (§ Principle of duality) and the other a more ...
When it tiles the plane it will give a wallpaper group and when it tiles the sphere or hyperbolic plane it gives either a spherical symmetry group or Hyperbolic symmetry group. The type of space the polygons tile can be found by calculating the Euler characteristic , χ = V − E + F , where V is the number of corners (vertices), E is the ...
O h, (*432) [4,3] =. Icosahedral symmetry. I h, (*532) [5,3] =. In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O (3), the group of all isometries that leave the origin fixed, or ...
The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane: 2 families of rosette groups – 2D point groups. 7 frieze groups – 2D line groups. 17 wallpaper groups – 2D space groups.