Search results
Results from the WOW.Com Content Network
This proves that all points in the intersection are the same distance from the point E in the plane P, in other words all points in the intersection lie on a circle C with center E. [8] This proves that the intersection of P and S is contained in C. Note that OE is the axis of the circle. Now consider a point D of the circle C. Since C lies in ...
A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.
A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in perspective, laid the groundwork for this mathematical topic.
20 points and their Voronoi cells (larger version below) In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. It can be classified also as a tessellation. In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators).
The angle scale is absolute, and Euclid uses the right angle as his basic unit, so that, for example, a 45-degree angle would be referred to as half of a right angle. The distance scale is relative; one arbitrarily picks a line segment with a certain nonzero length as the unit, and other distances are expressed in relation to it.
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...
That is, a plane duality σ will map points to lines and lines to points (P σ = L and L σ = P) in such a way that if a point Q is on a line m (denoted by Q I m) then Q I m ⇔ m σ I ∗ Q σ. A plane duality which is an isomorphism is called a correlation. [6] The existence of a correlation means that the projective plane C is self-dual.
Synthetically, affine planes are 2-dimensional affine geometries defined in terms of the relations between points and lines (or sometimes, in higher dimensions, hyperplanes). Defining affine (and projective) geometries as configurations of points and lines (or hyperplanes) instead of using coordinates, one gets examples with no coordinate ...