enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Special relativity - Wikipedia

    en.wikipedia.org/wiki/Special_relativity

    e. In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein 's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates: [p 1][1][2] The laws of physics are invariant (identical ...

  3. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor[1]) is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in derivations of the ...

  4. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Lorentz factor. where and v is the relative velocity between two inertial frames. For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t and t' at the same position x in same inertial frame)

  5. Proper time - Wikipedia

    en.wikipedia.org/wiki/Proper_time

    Proper time. In relativity, proper time (from Latin, meaning own time) along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time, which is independent of coordinates, and is a Lorentz scalar. [1]

  6. Formulations of special relativity - Wikipedia

    en.wikipedia.org/wiki/Formulations_of_special...

    As formulated by Albert Einstein in 1905, the theory of special relativity was based on two main postulates: The principle of relativity: The form of a physical law is the same in any inertial frame (a frame of reference that is not accelerating in any direction). The speed of light is constant: In all inertial frames, the speed of light c is ...

  7. Acceleration (special relativity) - Wikipedia

    en.wikipedia.org/wiki/Acceleration_(special...

    Acceleration (special relativity) Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration".

  8. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch ...

  9. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The relativistic mass is the sum total quantity of energy in a body or system (divided by c2). Thus, the mass in the formula is the relativistic mass. For a particle of non-zero rest mass m moving at a speed relative to the observer, one finds. In the center of momentum frame, and the relativistic mass equals the rest mass.