Search results
Results from the WOW.Com Content Network
Protein structure is the three-dimensional arrangement of atoms in an amino acid -chain molecule. Proteins are polymers – specifically polypeptides – formed from sequences of amino acids, which are the monomers of the polymer. A single amino acid monomer may also be called a residue, which indicates a repeating unit of a polymer.
A protein is a polyamide. Secondary structure: regularly repeating local structures stabilized by hydrogen bonds. The most common examples are the α-helix, β-sheet and turns. Because secondary structures are local, many regions of different secondary structure can be present in the same protein molecule.
Enzymes classified according to their Enzyme Commission number (EC). Note that strictly speaking, an EC number corresponds to the reaction the enzyme catalyzes, not the protein per se. However each EC number has been mapped to one or more specific proteins. List of enzymes. EC 1: Oxidoreductases. EC 2: Transferases. EC 3: Hydrolases. EC 4: Lyases.
Protein is a nutrient needed by the human body for growth and maintenance. Aside from water, proteins are the most abundant kind of molecules in the body. Protein can be found in all cells of the body and is the major structural component of all cells in the body, especially muscle. This also includes body organs, hair and skin.
An alpha helix (or α-helix) is a sequence of amino acids in a protein that are twisted into a coil (a helix). The alpha helix is the most common structural arrangement in the secondary structure of proteins. It is also the most extreme type of local structure, and it is the local structure that is most easily predicted from a sequence of amino ...
Protein secondary structure is the local spatial conformation of the polypeptide backbone excluding the side chains. [1] The two most common secondary structural elements are alpha helices and beta sheets, though beta turns and omega loops occur as well. Secondary structure elements typically spontaneously form as an intermediate before the ...
Intermediate filaments (IFs) are cytoskeletal structural components found in the cells of vertebrates, and many invertebrates. [1][2][3] Homologues of the IF protein have been noted in an invertebrate, the cephalochordate Branchiostoma. [4] Intermediate filaments are composed of a family of related proteins sharing common structural and ...
Protein before and after folding Results of protein folding. Protein folding is the physical process by which a protein, after synthesis by a ribosome as a linear chain of amino acids, changes from an unstable random coil into a more ordered three-dimensional structure. This structure permits the protein to become biologically functional. [1]