Search results
Results from the WOW.Com Content Network
Strictly speaking, the bulk modulus is a thermodynamic quantity, and in order to specify a bulk modulus it is necessary to specify how the pressure varies during compression: constant- temperature (isothermal ), constant- entropy (isentropic ), and other variations are possible. Such distinctions are especially relevant for gases.
A pressure gauge's bulk modulus is known, and its thermal equation of state is well known. To study a solid with unknown bulk modulus, it has to be loaded with a pressure gauge, and its pressure will be determined from its pressure gauge. The most common pressure gauges are Au, Pt, Cu, and MgO, etc.
The third-order Birch–Murnaghan isothermal equation of state is given by = [() / /] {+ (′) [() /]}. where P is the pressure, V 0 is the reference volume, V is the deformed volume, B 0 is the bulk modulus, and B 0 ' is the derivative of the bulk modulus with respect to pressure. The bulk modulus and its derivative are usually obtained from ...
Generally, at constant temperature, the bulk modulus is defined by: = (). The easiest way to get an equation of state linking P and V is to assume that K is constant, that is to say, independent of pressure and deformation of the solid, then we simply find the Hooke's law.
The larger the shear modulus, the greater the ability for a material to resist shearing forces. Therefore, the shear modulus is a measure of rigidity. Shear modulus is related to bulk modulus as 3/G = 2B(1 − 2v)(1 + v), where v is the Poisson's ratio, which is typically ~0.1 in covalent materials. If a material contains highly directional ...
The bulk modulus is an extension of Young's modulus to three dimensions. Flexural modulus ( E flex ) describes the object's tendency to flex when acted upon by a moment . Two other elastic moduli are Lamé's first parameter , λ, and P-wave modulus , M , as used in table of modulus comparisons given below references.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.
In engineering, the elasticity of a material is quantified by the elastic modulus such as the Young's modulus, bulk modulus or shear modulus which measure the amount of stress needed to achieve a unit of strain; a higher modulus indicates that the material is harder to deform. The SI unit of this modulus is the pascal (Pa).