enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Principia Mathematica - Wikipedia

    en.wikipedia.org/wiki/Principia_Mathematica

    An "extensional stance" and restriction to a second-order predicate logic means that a propositional function extended to all individuals such as "All 'x' are blue" now has to list all of the 'x' that satisfy (are true in) the proposition, listing them in a possibly infinite conjunction: e.g. x 1x 2 ∧ . . . ∧ x n ∧ . . ..

  3. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    Bertrand's postulate and a proof; Estimation of covariance matrices; Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational

  4. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    [nb 2] The definition of x 0 requires further the existence of a multiplicative identity. [38] An algebraic structure consisting of a set together with an associative operation denoted multiplicatively, and a multiplicative identity denoted by 1 is a monoid. In such a monoid, exponentiation of an element x is defined inductively by

  5. Mathematical fallacy - Wikipedia

    en.wikipedia.org/wiki/Mathematical_fallacy

    In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...

  6. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Also, characterisations (1), (2), and (4) for apply directly for a complex number. Definition (3) presents a problem because there are non-equivalent paths along which one could integrate; but the equation of (3) should hold for any such path modulo 2 π i {\displaystyle 2\pi i} .

  7. Uniqueness quantification - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_quantification

    In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [2] or "∃ =1". For example, the formal statement

  8. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x , denoted ⌈ x ⌉ or ceil( x ) .

  9. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Since (y 2, z, x 2) form a primitive Pythagorean triple, they can be written z = 2de y 2 = d 2 − e 2 x 2 = d 2 + e 2. where d and e are coprime and d > e > 0. Thus, x 2 y 2 = d 4 − e 4. which produces another solution (d, e, xy) that is smaller (0 < d < x). As before, there must be a lower bound on the size of solutions, while this argument ...