Search results
Results from the WOW.Com Content Network
Radiolysis is the dissociation of molecules by ionizing radiation.It is the cleavage of one or several chemical bonds resulting from exposure to high-energy flux.The radiation in this context is associated with ionizing radiation; radiolysis is therefore distinguished from, for example, photolysis of the Cl 2 molecule into two Cl-radicals, where (ultraviolet or visible spectrum) light is used.
Tritium (from Ancient Greek τρίτος (trítos) 'third') or hydrogen-3 (symbol T or 3 H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.3 years. The tritium nucleus (t, sometimes called a triton) contains one proton and two neutrons, whereas the nucleus of the common isotope hydrogen-1 (protium) contains one proton and no neutrons, and that of non-radioactive hydrogen ...
Exposure to radiation causes chemical changes in gases. The least susceptible to damage are noble gases, where the major concern is the nuclear transmutation with follow-up chemical reactions of the nuclear reaction products. High-intensity ionizing radiation in air can produce a visible ionized air glow of telltale
Deuterium, 2 H (atomic mass 2.014 101 777 844 (15) Da), the other stable hydrogen isotope, has one proton and one neutron in its nucleus, called a deuteron. 2 H comprises 26–184 ppm (by population, not mass) of hydrogen on Earth; the lower number tends to be found in hydrogen gas and higher enrichment (150 ppm) is typical of seawater.
Radiation chemistry is a subdivision of nuclear chemistry which studies the chemical effects of ionizing radiation on matter. This is quite different from radiochemistry, as no radioactivity needs to be present in the material which is being chemically changed by the radiation. An example is the conversion of water into hydrogen gas and ...
Hydrogen is a chemical element; it has symbol H and atomic number 1. It is the lightest element and, at standard conditions, is a gas of diatomic molecules with the formula H 2, sometimes called dihydrogen, [11] hydrogen gas, molecular hydrogen, or simply hydrogen. It is colorless, odorless, [12] non-toxic, and highly combustible.
Abundances of the chemical elements in the Solar System. Hydrogen and helium are most common, residuals within the paradigm of the Big Bang. [8] Li, Be and B are rare because they are poorly synthesized in the Big Bang and also in stars; the main source of these elements is cosmic ray spallation.
It is also used in radiation detectors such as the Geiger-Müller counter or the ionization chamber. The ionization process is widely used in a variety of equipment in fundamental science (e.g., mass spectrometry) and in medical treatment (e.g., radiation therapy). It is also widely used for air purification, though studies have shown harmful ...