Search results
Results from the WOW.Com Content Network
In coordination chemistry, a coordinate covalent bond, [1] also known as a dative bond, [2] dipolar bond, [1] or coordinate bond [3] is a kind of two-center, two-electron covalent bond in which the two electrons derive from the same atom. The bonding of metal ions to ligands involves this kind of interaction. [4]
Structure of one part of one stack of the charge-transfer complex between pyrene and 1,3,5-trinitrobenzene. [1]In chemistry, charge-transfer (CT) complex, or electron donor-acceptor complex, describes a type of supramolecular assembly of two or more molecules or ions.
A linear tetradentate ligand has the four donor atoms in a line and each subsequent donor is connected by one of three bridges. Such a ligand bound to a metal in tetrahedral coordination can only connect in one way, though if the ligand is unsymmetrical then there are two chiral arrangements.
However, these ligands also form dative covalent bonds like the L-type. [2] This type of ligand is not usually used because in certain situations it can be written in terms of L and X. For example, if a Z ligand is accompanied by an L type, it can be written as X 2. Examples of these ligands are Lewis acids, such as BR 3. [3]
A solid with extensive hydrogen bonding will be considered a molecular solid, yet strong hydrogen bonds can have a significant degree of covalent character. As noted above, covalent and ionic bonds form a continuum between shared and transferred electrons; covalent and weak bonds form a continuum between shared and unshared electrons.
Unlike in the case of POF 3, the Schomaker-Stevenson rule predicts appropriate bond length for the P–O bond only if the P–O bond is treated as a double bond, P=O. [ citation needed ] More modern treatments explain the tight P–O bond as a combination of lone pair transfer from the phosphorus to the oxygen atom and a dative π back-bond ...
The strong bonding of metals in liquid form demonstrates that the energy of a metallic bond is not highly dependent on the direction of the bond; this lack of bond directionality is a direct consequence of electron delocalization, and is best understood in contrast to the directional bonding of covalent bonds.
This bonding scheme is succinctly summarized by the following two resonance structures: I—I···I − ↔ I − ···I—I (where "—" represents a single bond and "···" represents a "dummy bond" with formal bond order 0 whose purpose is only to indicate connectivity), which when averaged reproduces the I—I bond order of 0.5 obtained ...