Search results
Results from the WOW.Com Content Network
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
Volume velocity, volume flux φ V (no standard symbol) = m 3 s −1 [L] 3 [T] −1: Mass current per unit volume: s (no standard symbol) = / kg m −3 s −1 [M] [L] −3 [T] −1: Mass current, mass flow rate: I m
In fluid mechanics, the force density is the negative gradient of pressure. It has the physical dimensions of force per unit volume. Force density is a vector field representing the flux density of the hydrostatic force within the bulk of a fluid. Force density is represented by the symbol f, [1] and given by the following equation, where p is ...
Magnitude Value Item 1 N 1.4 N The weight of a smartphone [13] [14]: 2.5 N Typical thrust of a Dual-Stage 4-Grid ion thruster.: 9.8 N One kilogram-force, nominal weight of a 1 kg (2.2 lb) object at sea level on Earth [15]
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass through a surface per time .. The overdot on ˙ is Newton's notation for a time derivative.Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force. [2]
ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure. From Bernoulli's law, dynamic pressure is given by