Search results
Results from the WOW.Com Content Network
The Bode plot for a linear, time-invariant system with transfer function (being the complex frequency in the Laplace domain) consists of a magnitude plot and a phase plot. The Bode magnitude plot is the graph of the function | H ( s = j ω ) | {\displaystyle |H(s=j\omega )|} of frequency ω {\displaystyle \omega } (with j {\displaystyle j ...
This work has been released into the public domain by its author, Mik81.This applies worldwide. In some countries this may not be legally possible; if so: Mik81 grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f 1 and upper 3 dB cutoff frequency f 2 Bode plot (a logarithmic frequency response plot) of any first-order low-pass filter with a normalized cutoff frequency at =1 and a unity gain (0 dB) passband.
A Nichols plot. The Nichols plot is a plot used in signal processing and control design, named after American engineer Nathaniel B. Nichols. [1] [2] [3] It plots the phase response versus the response magnitude of a transfer function for any given frequency, and as such is useful in characterizing a system's frequency response.
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
Bode's sensitivity integral, discovered by Hendrik Wade Bode, is a formula that quantifies some of the limitations in feedback control of linear parameter invariant systems. Let L be the loop transfer function and S be the sensitivity function. In the diagram, P is a dynamical process that has a transfer function P(s).
However, one must exercise caution in attributing causality. If the relation (transfer function) between the input and output is nonlinear, then values of the coherence can be erroneous. Another common mistake is to assume a causal input/output relation between observed variables, when in fact the causative mechanism is not in the system model.
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below: