enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cycle detection - Wikipedia

    en.wikipedia.org/wiki/Cycle_detection

    In computer science, cycle detection or cycle finding is the algorithmic problem of finding a cycle in a sequence of iterated function values. For any function f that maps a finite set S to itself, and any initial value x 0 in S , the sequence of iterated function values

  3. Cycle (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cycle_(graph_theory)

    In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an acyclic graph. A directed graph without directed cycles is called a directed ...

  4. Rocha–Thatte cycle detection algorithm - Wikipedia

    en.wikipedia.org/wiki/Rocha–Thatte_cycle...

    The Rocha–Thatte algorithm is a general algorithm for detecting cycles in a directed graph by message passing among its vertices, based on the bulk synchronous message passing abstraction. This is a vertex-centric approach in which the vertices of the graph work together for detecting cycles.

  5. Kruskal's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kruskal's_algorithm

    If the graph is connected, it finds a minimum spanning tree. It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2] The key steps of the algorithm are sorting and the use of a disjoint-set data structure to detect cycles. Its running time is dominated by the time to sort all of the ...

  6. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...

  7. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    For graphs of constant arboricity, such as planar graphs (or in general graphs from any non-trivial minor-closed graph family), this algorithm takes O (m) time, which is optimal since it is linear in the size of the input. [18] If one desires only a single triangle, or an assurance that the graph is triangle-free, faster algorithms are possible.

  8. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be significantly slower (in the worst case, as a function of the number of vertices) than finding a ...

  9. Zero-weight cycle problem - Wikipedia

    en.wikipedia.org/wiki/Zero-weight_cycle_problem

    Therefore, the special case of the zero-weight cycle problem, on graphs with no negative cycle, has a polynomial-time algorithm. [1] In contrast, for graphs that contain negative cycles, detecting a simple cycle of weight exactly 0 is an NP-complete problem. [1] This is true even when the weights are integers of polynomial magnitude.