Search results
Results from the WOW.Com Content Network
Lung parenchyma showing damage due to large subpleural bullae. Parenchyma (/ p ə ˈ r ɛ ŋ k ɪ m ə /) [1] [2] is the bulk of functional substance in an animal organ or structure such as a tumour. In zoology, it is the tissue that fills the interior of flatworms. In botany, it is some layers in the cross-section of the leaf. [3]
The pathway consists of a para-arterial influx mechanism for CSF driven primarily by arterial pulsation, [2] which "massages" the low-pressure CSF into the denser brain parenchyma, and the CSF flow is regulated during sleep by changes in parenchyma resistance due to expansion and contraction of the extracellular space.
The blood-brain barrier and the blood-spinal cord barrier: Pericytes and astrocytes endfeet (Astrocytic endfeet envelop the abluminal surface of brain capillaries, accounting for 70% to nearly 100% of their total surface area). [34] The inner blood retinal barrier (iBRB) [35] Pericytes and endfeet of glial cells like astrocytes and Müller cells.
An organ's tissues can be broadly categorized as parenchyma, the functional tissue, and stroma, the structural tissue with supportive, connective, or ancillary functions. For example, the gland's tissue that makes the hormones is the parenchyma, whereas the stroma includes the nerves that innervate the parenchyma, the blood vessels that ...
Cerebrospinal fluid (CSF) is a clear, colorless transcellular body fluid found within the meningeal tissue that surrounds the vertebrate brain and spinal cord, and in the ventricles of the brain. CSF is mostly produced by specialized ependymal cells in the choroid plexuses of the ventricles of the brain, and absorbed in the arachnoid granulations .
The salience network is theorised to mediate switching between the default mode network and frontoparietal network (central executive network). [1] [2] [3]The frontoparietal network (FPN), generally also known as the central executive network (CEN) or, more specifically, the lateral frontoparietal network (L-FPN) (see Nomenclature), is a large-scale brain network primarily composed of the ...
Functional integration is the study of how brain regions work together to process information and effect responses. Though functional integration frequently relies on anatomic knowledge of the connections between brain areas, the emphasis is on how large clusters of neurons – numbering in the thousands or millions – fire together under various stimuli.
These form the ventricular system of the brain: [8] The neural stem cells of the developing brain, principally radial glial cells, line the developing ventricular system in a transient zone called the ventricular zone. [9] The prosencephalon divides into the telencephalon, which forms the cortex of the developed brain, and the diencephalon.