enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.

  3. List of Solar System objects by size - Wikipedia

    en.wikipedia.org/wiki/List_of_Solar_System...

    For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.

  4. Areostationary orbit - Wikipedia

    en.wikipedia.org/wiki/Areostationary_orbit

    Substituting the mass of Mars for M and the Martian sidereal day for T and solving for the semimajor axis yields a synchronous orbit radius of 20,428 km (12,693 mi) above the surface of the Mars equator. [3] [4] [5] Subtracting Mars's radius gives an orbital altitude of 17,032 km (10,583 mi). Two stable longitudes exist - 17.92°W and 167.83°E.

  5. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius of an object is proportional to its mass. Accordingly, the Sun has a Schwarzschild radius of approximately 3.0 km (1.9 mi), [8] whereas Earth's is approximately 9 mm (0.35 in) [8] and the Moon's is approximately 0.1 mm (0.0039 in).

  6. Mars - Wikipedia

    en.wikipedia.org/wiki/Mars

    At the bottom of the mantle lies a basal liquid silicate layer approximately 150–180 km thick. [44] [54] Mars's iron and nickel core is completely molten, with no solid inner core. [55] [56] It is around half of Mars's radius, approximately 1650–1675 km, and is enriched in light elements such as sulfur, oxygen, carbon, and hydrogen. [57] [58]

  7. Gravity of Mars - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Mars

    The gravity of Mars is a natural phenomenon, due to the law of gravity, or gravitation, by which all things with mass around the planet Mars are brought towards it. It is weaker than Earth's gravity due to the planet's smaller mass. The average gravitational acceleration on Mars is 3.728 m/s 2 (about 38% of the gravity of Earth) and it varies. [1]

  8. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    the kinetic energy of the system is equal to the absolute value of the total energy; the potential energy of the system is equal to twice the total energy; The escape velocity from any distance is √ 2 times the speed in a circular orbit at that distance: the kinetic energy is twice as much, hence the total energy is zero. [citation needed]

  9. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  1. Related searches mars radius in km squared times a circle equals 3 grams math facts

    mars radius in km squared times a circle equals 3 grams math facts worksheet