enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum tunnelling - Wikipedia

    en.wikipedia.org/wiki/Quantum_tunnelling

    Tunneling is readily detectable with barriers of thickness about 1–3 nm or smaller for electrons, and about 0.1 nm or smaller for heavier particles such as protons or hydrogen atoms. [1] Some sources describe the mere penetration of a wave function into the barrier, without transmission on the other side, as a tunneling effect, such as in ...

  3. Hartman effect - Wikipedia

    en.wikipedia.org/wiki/Hartman_effect

    Since tunneling is a wave phenomenon, it occurs for all kinds of waves - matter waves, electromagnetic waves, and even sound waves. Hence the Hartman effect should exist for all tunneling waves. There is no unique and universally accepted definition of "tunneling time" in physics.

  4. Tunnel ionization - Wikipedia

    en.wikipedia.org/wiki/Tunnel_ionization

    In physics, tunnel ionization is a process in which electrons in an atom (or a molecule) tunnel through the potential barrier and escape from the atom (or molecule). In an intense electric field , the potential barrier of an atom (molecule) is distorted drastically.

  5. Klein paradox - Wikipedia

    en.wikipedia.org/wiki/Klein_paradox

    In relativistic quantum mechanics, the Klein paradox (also known as Klein tunneling) is a quantum phenomenon related to particles encountering high-energy potential barriers. It is named after physicist Oskar Klein who discovered in 1929. [ 1 ]

  6. Rectangular potential barrier - Wikipedia

    en.wikipedia.org/wiki/Rectangular_potential_barrier

    The operation of a scanning tunneling microscope (STM) relies on this tunneling effect. In that case, the barrier is due to the gap between the tip of the STM and the underlying object. Since the tunnel current depends exponentially on the barrier width, this device is extremely sensitive to height variations on the examined sample.

  7. Ray (optics) - Wikipedia

    en.wikipedia.org/wiki/Ray_(optics)

    A finite ray or real ray is a ray that is traced without making the paraxial approximation. [12] [13] A parabasal ray is a ray that propagates close to some defined "base ray" rather than the optical axis. [14] This is more appropriate than the paraxial model in systems that lack symmetry about the optical axis.

  8. Transmission coefficient - Wikipedia

    en.wikipedia.org/wiki/Transmission_coefficient

    Different fields of application have different definitions for the term. All the meanings are very similar in concept: In chemistry, the transmission coefficient refers to a chemical reaction overcoming a potential barrier; in optics and telecommunications it is the amplitude of a wave transmitted through a medium or conductor to that of the incident wave; in quantum mechanics it is used to ...

  9. Scanning transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Scanning_transmission...

    Typical X-ray detectors for electron microscopes cover only a small solid angle, which makes X-ray detection relatively inefficient since X-rays are emitted from the sample in every direction. However, detectors covering large solid angles have been recently developed, [ 27 ] and atomic resolution X-ray mapping has even been achieved.